最后活跃于 1725433464

将互评的结果,去掉最高,去掉最低,保留中间部分并求平均数

LiuShen's Avatar LiuShen 修订了这个 Gist 1725433464. 跳至此修订

没有变更

LiuShen's Avatar LiuShen 修订了这个 Gist 1725422018. 跳至此修订

没有变更

LiuShen 修订了这个 Gist 1725414224. 跳至此修订

1 file changed, 0 insertions, 0 deletions

average_comprehensive_mutual_evaluation.py 重命名为 average_evaluation.py

文件已重命名,但名称与之前没有差异

LiuShen 修订了这个 Gist 1725414039. 跳至此修订

1 file changed, 0 insertions, 0 deletions

"\344\272\222\350\257\204\345\217\226\345\271\263\345\235\207.py" 重命名为 average_comprehensive_mutual_evaluation.py

文件已重命名,但名称与之前没有差异

LiuShen 修订了这个 Gist 1725413876. 跳至此修订

1 file changed, 68 insertions

(文件已创建)

@@ -0,0 +1,68 @@
1 + import openpyxl
2 + import numpy as np
3 +
4 + # 定义数据范围
5 + data_range = "C5:R39"
6 +
7 + # 定义源文件名称数组
8 + source_files = ["./1.xlsx", "./2.xlsx", "./3.xlsx", "./4.xlsx", "./5.xlsx", "./6.xlsx", "./7.xlsx", "./8.xlsx", "./9.xlsx"]
9 +
10 + # 定义目标文件名称
11 + target_file = "./total.xlsx"
12 +
13 + # 打开目标文件,如果不存在则创建一个新的工作簿
14 + try:
15 + target_wb = openpyxl.load_workbook(target_file)
16 + target_ws = target_wb.active
17 + except FileNotFoundError:
18 + target_wb = openpyxl.Workbook()
19 + target_ws = target_wb.active
20 +
21 + # 解析数据范围
22 + start_cell, end_cell = data_range.split(':')
23 + start_row, start_col = openpyxl.utils.coordinate_to_tuple(start_cell)
24 + end_row, end_col = openpyxl.utils.coordinate_to_tuple(end_cell)
25 +
26 + print(f"Data range: ({start_row}, {start_col}) to ({end_row}, {end_col})")
27 +
28 + # 遍历数据范围内的每个单元格
29 + for row in range(start_row, end_row + 1):
30 + for col in range(start_col, end_col + 1):
31 + cell_values = []
32 +
33 + # 从每个源文件中读取对应位置的数据
34 + for file in source_files:
35 + wb = openpyxl.load_workbook(file)
36 + ws = wb.active
37 + cell_value = ws.cell(row=row, column=col).value
38 + if cell_value is not None:
39 + cell_values.append(cell_value)
40 +
41 + if len(cell_values) > 0:
42 + print(f"Processing cell ({row}, {col}): Data = {cell_values}")
43 +
44 + # 去掉最大值和最小值后求平均值
45 + if len(cell_values) > 2: # 确保有足够的数据进行操作
46 + max_value = max(cell_values)
47 + min_value = min(cell_values)
48 + cell_values.remove(max_value)
49 + cell_values.remove(min_value)
50 + average_value = np.mean(cell_values)
51 +
52 + print(f"Max value: {max_value}, Min value: {min_value}, Average after removal: {average_value}")
53 + elif len(cell_values) == 2: # 如果只有两个值,则直接取平均值
54 + max_value = max(cell_values)
55 + min_value = min(cell_values)
56 + average_value = np.mean(cell_values)
57 + print(f"Only two values: Max = {max_value}, Min = {min_value}, Average: {average_value}")
58 + elif len(cell_values) == 1: # 如果只有一个值,则直接使用该值
59 + average_value = cell_values[0]
60 + print(f"Only one value: {average_value}")
61 + else:
62 + average_value = None # 如果没有数据,设为None
63 +
64 + # 将计算结果写入目标文件的对应位置
65 + target_ws.cell(row=row, column=col, value=average_value)
66 +
67 + # 保存目标文件
68 + target_wb.save(target_file)
更新 更早